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Abstract Fly ash, generated during the combustion of

coal for energy production, has been regarded as an

environmental pollutant if not properly disposed of. Many

aggressive efforts have been evaluated to recycle the fly

ash. In this paper, a new approach was developed to

prepare lubricant additive based on fly ash and the tri-

bological properties were investigated in detail. The

results show that fly ash modified with oleic acid not only

performs favorable dispersive ability, but also signifi-

cantly improves the friction-reducing and anti-wear

abilities for steel/steel contact. Based on the characteri-

zation of the wear scars by scanning electron microscopy,

Raman spectroscopy and energy-dispersive X-ray spec-

troscopy, the excellent tribological properties are attrib-

uted to the synergies of fly ash and oleic acid because fly

ash can act as spacer and bearing and deposit on the worn

surfaces to significantly improve the friction-reducing and

anti-wear abilities, and the introduction of strong polar

groups can make fly ash easily form a stable and suc-

cessive tribofilm on the rubbing surfaces throughout the

sliding process.

Keywords Fly ash � Oleic acid � Lubricant additive �
Tribology

1 Introduction

Friction which is an essential characteristic of contacts in

motion leads to the failure of most mechanical parts and

consumption in energy [1]. It cannot be eliminated, but can

be controlled by employing lubricants to improve the tri-

bological performances. Given the world’s energy crisis,

there have been increasing demands for environmental

protection and the reliability assurance of mechanical

equipment, so it is particularly imperative to develop green,

inexpensive, effective and versatile lubricant additives

[2–4]. Ionic liquids, graphene and carbon nanotubes have

been explored as excellent lubricant additives for a long

time, whereas there are still some problems such as cor-

rosion, dispersion and cost, which limit actual application

in industry [5–7]. Thus, a continuous desire also exists to

explore new lubricant additives.

Fly ash, a by-product of thermal power plants, is rec-

ognized as an environmental pollutant if not properly dis-

posed of [8, 9]. It is primarily composed of unburned

carbon and oxides of silicon, aluminum, iron, etc. The

density and grain size of fly ash as received from the power

plants lie in the range from 0.1 to 250 lm and 1.9 to

2.9 g cm-3, respectively [10–12]. Fly ash also has a high

porosity and a large special surface area, indicating a

strong adsorption ability [13, 14]. Due to the world’s

increasing dependence on coal-fired power plants, the

current annual production of fly ash worldwide is estimated

around 750 million tones [15]. Fly ash without proper

dispose can cause water and soil pollution, disrupt eco-

logical cycles and pose environment hazards; therefore,

more aggressive efforts have been attempted to recycle fly

ash [16–18]. For example, it has been widely used in

concrete production [19, 20], ceramic industry [21], soil

amendment [22, 23], zeolite synthesis [24, 25] and
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polymers [26]. In addition, fly ash has been also widely

used in the field of lubrication. Sudarshan et al. [27] fab-

ricated alloy composites containing fly ash via stir-cast

technique. The results showed that alloy composites

exhibited better anti-wear performance compared to unre-

inforced alloy, which was attributed to the rolling effect of

fly ash during the sliding process. Samrat et al. [28]

incorporated fly ash particles in automotive brake lining

friction composites and found the developed composites

exhibited stable coefficient of friction and low wear rate.

Harekrushna et al. [29] obtained fly ash added red mud

coatings by plasma spraying technique and investigated the

tribological performances. The results showed that the

addition of fly ash greatly improved the anti-wear property.

A number of studies have been successfully made to

introduce fly ash to improve the tribological properties,

whereas fly ash used as an additive in lubricant, to the best

of our knowledge, has not been reported.

The related studies [30–32] have reported that micro/-

nano-particles can significantly enhance the tribological

properties; therefore, it is possible to explore fly ash as a

lubricant additive to improve tribological properties. If the

fly ash could be as effective as expected, it provides a new

approach to obtain low-cost lubricant additive and recycle it.

Therefore, the focus of present work is to prepare lubricant

additive based on fly ash and investigate the tribological

properties in detail. In the meanwhile, because the disper-

sive ability of solid additive has a significant effect on the

tribological properties, therefore, the oleic acid is introduced

as surfactant to modify the fly ash to improve the dispersive

and tribological performances. Furthermore, the present

study also discusses the tribological mechanisms via scan-

ning electron microscopy (SEM), energy-dispersive X-ray

spectroscopy (EDS) and Raman spectroscopy.

2 Experimental Detail

2.1 Materials

The polyalphaolefin (PAO) used as the base oil was pur-

chased from Golden Chemical Co. Ltd. (Nanjing, China),

and Table 1 shows its main characteristics. Acetone, pet-

roleum ether and oleic acid were purchased from Sino-

pharm Chemical Reagent Co. Ltd, and they are of

analytical reagent grade. Polytetrafluoroethylene (PTFE,

DyneonTM TF9207), with a density of 2.2 g cm-3 and

4 lm grain size, was used as a thickener to thicken the base

oil for lubricating grease. The fly ash without purification

was provided by the Jungar Power Plant (Inner Mongolia,

China), and the composition of the fly ash is (mass frac-

tion): SiO2 41.3%, Al2O3 27.6%, Fe2O3 8.3%, TiO2 4.5%,

MgO 1.8%, unburned carbon 12.7% and other 3.8%.

2.2 Preparation and Characterization

2.2.1 Preparation of Lubricant Additives

The target lubricating additives were synthesized as the

following procedures, and Fig. 1 is the schematic diagram

of preparation. First, a part of fly ash was heat-treated using

a muffle furnace at 500 �C for 12 h. Second, the cooling

product (denoted as H-fly ash) and untreated fly ash (de-

noted as fly ash) were pulverized using a ball mill,

respectively. The experimental parameters of ball milling

are as follows: The weight ratio of fly ash and grinding ball

is about 1/10, and the rotational speed of ball mill

is * 900 r min-1 for 5 h. Third, the pulverized fly ash was

filtered and then introduced into the vessel for 12 h of a

fierce agitation in bath of oleic acid whose mass was about

Table 1 Typical characteristics of polyalphaolefin (PAO)

Item PAO Standard

Kinematic viscosity(cSt) 40 �C 396 ASTM D445

Kinematic viscosity(cSt) 100 �C 39 ASTM D445

Viscosity index 147 ASTM D2270

Pour point (�C) -36 ASTM D97

Fire point (�C) 281 ASTM D2893

Fig. 1 Schematic diagram of preparation of lubricant additives
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three times of fly ash. Finally, the mixtures were washed

with acetone several times followed by a desiccation for

30 min at 80 �C. Thus, four types of lubricating additives

(fly ash, modified fly ash, treated fly ash and modified

treated fly ash) were obtained and they were abbreviated as

fly ash, M-fly ash, H-fly ash and MH-fly ash, respectively.

2.2.2 Preparation of Lubricating Oils and Lubricating

Greases

The lubricating oils and lubricating greases were synthe-

sized as follows. The obtained additives (content 0.2 wt%)

were added into PAO severally and were evenly dispersed

by ultrasonic processing for 30 min to afford lubricating

oils.

The as-synthesized lubricating oils were used as the base

oils to prepare lubricating greases. First, the base oil (70

wt%) was infused into the reaction vessel and agitated at

once. Second, the PTFE as a thickener (30 wt%) was

slowly added into the vessel under vigorous stirring. As the

base oil was blended homogenously with the PTFE pow-

der, acetone, whose mass was approximately half of the

PTFE, was injected dropwise and agitated for about 30 min

to confirm that PTFE powder was entirely homo-dispersed

within the base oil. Third, the mixture was heated to 80 �C
for another 30 min to remove acetone. Last, the mixture

was cooled down to room temperature and the lubricating

greases were obtained after three steps of fine grinding/

homogenization with a three-roller mill.

2.2.3 Characterization of the Additives and Lubricating

Greases

The morphology of the pulverized fly ash was obtained by

a SU8010 scanning electron microscopy (SEM) (HITA-

CHI, Japan). The Fourier transform infrared (FT-IR)

spectra of lubricating additives were recorded in the

wavenumber range of 400–4000 cm-1 with a Thermo

Fisher Scientific FI-TR spectrometer. Their Raman spectra

were obtained by Renishaw invia Raman microscopy with

514 nm laser excitation. The penetration, dropping point

and copper strip tests of the lubricants were determined

according to the national standards, including GB/T 269,

GB/T 3498 and GB/T 7326, respectively.

2.3 Friction and Wear Tests

The tribological properties of the lubricants for steel/steel

contact were investigated on a ball-on-block MFT-R4000

reciprocating friction and wear tester. The upper ball

(commercially available AISI 52100 steel ball, diameter

5 mm, hardness 710 Hv, surface roughness 0.05 um) was

driven to reciprocally slide at an amplitude of 5 mm

against the lower fixed block (A 24 mm 97.9 mm, AISI

52100 steel, hardness 590–610 Hv). The lower blocks were

polished using a polishing machine to achieve the surface

roughness of about 0.05 um before test. The applied load

ranges from 50 to 200 N (corresponding to the Hertzian

pressure in the range of 1.7–2.7 GPa) with the frequency of

5 Hz for 30 min at room temperature (RT). Before every

tribological test, the ball and block were cleansed in pet-

roleum ether for 10 min utilizing an ultrasonic cleaner and

then about 0.5 g of lubricant was introduced into the

reciprocating sliding region. The coefficient of friction

(COF) was automatically recorded by a computer con-

nected with the tribometer, and three repetitive measure-

ments were taken to guarantee the reliability of the

experimental data. After the tribological test, the lower

blocks were cleaned ultrasonically for 10 min in bath of

petroleum ether. Then, an optical microscopy (Olympus,

Japan) was employed to acquire the wear width. An EVO-

18 scanning electron microscopy (SEM, Zeiss, Germany),

an energy-dispersive X-ray spectroscopy (EDS, Bruker,

Germany) and a Raman spectroscopy with 514 nm laser

excitation (Renishaw, UK) were employed to obtain the

morphologies of the worn surfaces and analyze the wear

mechanisms.

3 Results

3.1 Analysis of the Additives

Figure 2a shows the SEM micrograph of the filtered fly

ash. It is obviously seen that the fly ash has multiple shapes

and uneven sizes, which range from about 150 to 600 nm.

The Raman spectra of fly ash and H-fly ash are shown in

Fig. 2b. The fly ash shows the characteristics peaks of D

band (*1340 cm-1) and G band (*1600 cm-1), which

originate from the vibration of carbon atoms with dangling

bonds and vibration in all sp2-bonded carbon atoms,

respectively [33], thereby indicating that fly ash contains a

large amount of unburned carbon. Obraztsova et al. [34]

reported that shell curvature caused a downshift of G band

position in spherical carbon compared with that in planar

graphite (1580 cm-1). As a consequence, the position of G

band is determined by outmost shell in the Raman spectra,

which explains the G band shifts to a high frequency due to

the larger size and defects of unburned carbon [35, 36].

The FT-IR spectra of lubricant additives are presented in

Fig. 2c. The wide band at about 3525 cm-1 is attributed to

the stretching vibration of O–H [36], and those bands at

1080 and 798 cm-1 are attributed to the stretching vibra-

tions of Si–O–Si and Al–O–Al [37, 38]. The band at

570 cm-1 (stretching vibration of Al–O–Al) and 466 cm-1

(bending vibration of Si–O–Si and O–Si–O) is also
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indicative of silicate [37]. H-fly ash was observed to have a

strong band at 1720 cm-1 which indicated the presence of

C=O originates from the oxide of annealed fly ash. The

bands of oleic acid are located at 2930 and 2850 cm-1

(stretching vibrations of C–H bond in the –CH3 and –CH2

groups) and 1705 and 1455 cm-1 (stretching vibration of

C = O and –COOH) [36].

Figure 3 presents the photograph of the PAO with

addition of four types of lubricant additives after storage

for 168 h. It can be confirmed that the M-fly ash and MH-

fly ash perform better dispersion and stability, indicating

the tentative modification of fly ash with oleic acid is

successful. Of great significance is that the M-fly ash and

MH-fly ash with good dispersion can effectively adsorb on

the sliding surfaces to form a low-shear protective film to

improve the tribological properties.

3.2 Physical Properties of Lubricating Greases

Table 2 lists the physical properties of the additive-con-

tained greases. Compared with base grease, all the addi-

tive-doped greases have high dropping point and low

penetration. The reason is ascribed that the as-synthesized

additives with a high special surface area can restrict the

movement of base oil molecules, then leading to a high

dropping point and a low penetration [39, 40]. Meanwhile,

all the lubricating greases exhibit a good anti-corrosion

performance (copper corrosion 1a).

3.3 Tribological Behavior of Lubricating Oils

Figure 4 presents mean COFs and wear widths of the

lubricating oils, which contain 0.2 wt% additive, at mul-

tiple loads, 5 Hz and RT. The results illustrate that all the

additives have a preferable effect on the friction-reducing
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(a)
Fig. 2 SEM micrograph (a),
Raman spectra (b) and FT-IR

spectra (c) of lubricating
additives

Fig. 3 Photograph of PAO with addition of four types of lubricant

additives after storage for 168 h
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and anti-wear properties. The COFs and wear widths of the

MH-fly ash and M-fly ash are lower than those of H-fly ash

and fly ash at different loads, respectively. The most sig-

nificant improvement for lubricity is obtained by the PAO

with the addition of M-fly ash, reducing the COF and wear

width by *14 and *37%. This demonstrates that the

PAO with the adding amount of M-fly ash possesses the

most excellent friction reduction and anti-wear perfor-

mances than other lubricating oils.

Figure 5 provides the morphologies of the worn surfaces

on steel blocks at 200 N, 5 Hz, and all the SEM mor-

phologies are obtained at the same condition. As shown in

Fig. 5a and a’, the worn surfaces lubricated by PAO dis-

play a considerably wider and deeper wear scar, with a

plenty of deep furrows and large pits, indicating severe

wear occurred on this occasion. The addition of H-fly ash

and fly ash can make the worn surfaces (Fig. 5b-b’, d-d’)

slightly become smooth, with little pits and slight plastic

deformation. The worn surfaces (Fig. 5c-c’, e-e’) lubri-

cated by MH-fly ash and M-fly ash appear smaller and

smoother wear scars. This is consistent with the previous

results in Fig. 4, illustrating MH-fly ash and M-fly ash as

additives in PAO can significantly improve the friction

reduction and anti-wear performances.

3.4 Tribological Behavior of Lubricating Greases

The experimental results shown in Fig. 4 and 5 reveal that

MH-fly ash and H-fly ash have an effective improvement

on tribological performances. Therefore, this study con-

tinues to investigate the effect of MH-fly ash and M-fly ash

on the tribological properties of lubricating greases. Fig-

ure 6 shows the mean COFs and wear widths of the

lubricating greases at different loads, 5 Hz and RT. It is

seen that the mean COFs and wear widths of all additive-

contained greases are lower than those of base grease and

increase as the load growing, to some extent. The M-fly ash

grease exhibits the lowest COF and wear width at different

loads, implying the best friction reduction and anti-wear

abilities among the greases.

Figure 7 displays the SEM graphologies of worn sur-

faces on steel blocks at 200 N and 5 Hz. As shown in

Fig. 7a and a’, the worn surface lubricated by base grease

acquires a wide wear scar and deep grinding grooves,

whereas the worn surfaces (Fig. 7b-b’, c-c’) lubricated by

MH-fly ash grease and M-fly ash grease are relatively

smooth, which is attributed to the significant improvement

of MH-fly ash and M-fly ash on the tribological properties

for lubricating grease.

3.5 Lubrication Mechanisms

The worn surfaces on steel blocks after ultrasonic

washing were further checked with EDS and Raman

spectroscopy to explore the tribological mechanisms.

Figure 8 provides the Raman spectra of the worn surfaces

lubricated by M-fly ash grease and MH-fly ash grease.

For the M-fly ash and MH-fly ash tested in our study, the

Table 2 Physical properties of lubricating greases

Sample Dropping point (�C) Penetration (1/4 mm) Copper corrosion (T2 copper, 100 �C, 24 h)

Base grease 279 87.3 1a

Fly ash grease 296 82.1 1a

M-fly ash grease 294 81.9 1a

H-fly ash grease 291 82.4 1a

MH-fly ash grease 297 83.1 1a
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characteristics G and D bands can be clearly observed on

worn surfaces after friction test, indicating a carbon

protective film was formed on the worn surfaces during

the sliding process. Table 3 lists the typical elements and

their contents on the worn surfaces lubricated by different

lubricants. The characteristics Al and Si elements of the

fly ash appear on the worn surfaces, implying fly ash

deposited on the worn surfaces to form protective film

throughout frictional process. Meanwhile, the content of

C element on the worn surfaces lubricated by M-fly ash

oil and M-fly ash grease is the largest. Those elements

have a crucial influence on the friction reduction and

anti-wear performances. It is presumed that an effectively

protective film is formed on the worn surfaces by com-

plex physical and chemical reaction to improve the tri-

bological properties.

Fig. 5 SEM morphologies of the worn surfaces lubricated by a and

a’ PAO, b and b’ H-fly ash oil, c and c’ MH-fly ash oil, d and d’ fly
ash oil, e and e’ M-fly ash oil. (magnification: top images, 980; and

bottom images, 92000; load, 200 N; frequency, 5 Hz; stroke, 5 mm;

duration, 30 min; temperature, RT)
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(magnification: top images, 980; and bottom images, 92000; load, 200 N; frequency, 5 Hz; stroke, 5 mm; duration, 30 min; temperature, RT)
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Fig. 8 Raman spectra of the worn surfaces lubricated by M-fly ash

grease and MH-fly ash grease

Table 3 Typical elements of the worn surfaces on the steel blocks

Sample Fe Cr C O Al Si

Base oil (PAO) 83.10 1.97 6.86 8.07 – –

H-fly ash 81.86 1.62 8.03 7.91 0.26 0.32

MH-fly ash 82.59 1.95 7.28 7.53 0.24 0.41

Fly ash 80.85 1.45 8.78 8.21 0.36 0.35

M-fly ash 80.10 1.78 9.61 7.85 0.29 0.37

Base grease 86.01 1.70 6.28 6.01 – –

MH-fly ash 83.29 1.80 7.84 6.53 0.23 0.31

M-fly ash 82.75 1.78 8.83 5.98 0.26 0.40
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The tribological tests and analysis of the morphological

features of the worn surfaces show that fly ash as additive

can significantly improve the friction reduction and anti-

wear abilities for lubricating oil and grease. This result

inspires us to further explore the conceivable lubrication

mechanisms of fly ash. Based on the characterization by

SEM, Raman spectra and EDS, the enhancement in tribo-

logical properties of fly ash can be explained by various

aspects. First, the lubricants can uniformly settle down

between the contact surfaces. Fly ash can fill in the valley

of surfaces to increase contact area and perform like

spacers to avoid direct contact between the contact inter-

faces during the course of friction [41, 42]. Second, the

spherical fly ash also has rolling effect, which implies fly

ash would roll instead of slide between the contact inter-

faces, thereby reducing the shear force to improve the tri-

bological properties [27, 43–46]. Third, the appearance of

Al and Si on the worn surfaces (shown in Table 3) illus-

trates that the fly ash would deposit on the worn surfaces to

enhance the protective film during the sliding process.

Furthermore, Raman spectra with a downshift of G band

(1590 cm-1, shown in Fig. 8) also indicates that layered

carbon is generated during the sliding process, and it can

also slide between the contact pair to improve the tribo-

logical properties. This phenomenon is similar to the

onion-like carbon under friction condition, and the mech-

anism is also reported by Wei et al. and Bucholz et al.

[36, 47]. As for the M-fly ash and MH-fly ash, the intro-

duction of strong polar groups can greatly improve the

dispersive ability, which indicates the M-fly ash and MH-

fly ash can more easily adsorb on the worn surfaces to form

a stable and successive lubrication film throughout the

sliding process. Meanwhile, the related studies [48, 49]

reveal that oleic acid can also form lubrication film on the

worn surfaces to improve the friction-reducing and anti-

wear abilities. Consequently, the synergies of fly ash and

oleic acid give rise to the enhancement in the friction

reduction and anti-wear abilities of lubricants.

4 Conclusions

Fly ash as a solid waste causes a lot of environmental

pollution every year, and intensive efforts have been made

to recycle it. In this study, lubricant additives were pre-

pared based on fly ash and oleic acid was introduced to

improve the dispersive ability. Results show that fly ash

modified with oleic acid as an additive has an excellent

dispersibility and tribological properties. The reason lies in

the synergies of fly ash and oleic acid, because fly ash can

act as spacer and bearing and deposit on the worn surfaces

to significantly improve the friction reduction and anti-

wear abilities, and the introduction of strong polar groups

can make fly ash easily form a stable and successive tri-

bofilm on the rubbing surfaces throughout the sliding

process. This paper provides a new approach to obtain low-

cost lubricant additive and dispose of fly ash properly to

reduce environmental pollution. Because of the excellent

tribological performances, fly ash holds great potential as a

solid lubricant for a wide range of application.
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